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Therefore, an increase in the axial compressive force T contributes to a rise in the cri- 
tical external pressure P. The shape of the shell waviness under buckling is represented 
in Fig. 3. 

In conclusion, the author thanks I. I, Vorovich for formulating the problem and discuss- 

ing the results. 
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Problems which turn out to be incorrect in the membrane formu~tion are inves- 

tigated, The purpose of this paper is to show that the known anomaly, noted by 

Vlasov @]. in the behavior of shells of negative curvature and caused by the 
incorrectness of the formulation of the complete membrane problem for them, 
is not especially intrinsic property of shells of negative curvature and is observed 

also in shells of positive curvature, if the complete membrane problem turns out 
to be incorrect for them. The properties of the stress-strain state are studied as 
a function of the sign of the middle surface curvature and the manner of edge 

clamping. The state of stress of the shell is compared with the fundamental 
state of stress; the edge effect stresses are not taken into account. Two versions 

of the boundary conditions are considered : one edge of the shell free and the 

other rigidly clamped (cantilevered shell), and the case when both edges are 
rigidly clamped. 

1, Let us start from the equations and formulas of the bending theory in investigat- 

ing the state of stress of a thin elastic shell 
1 aT, 1 as 

-7 
.-I dx + 

~~(I.l-I’s)+IB~+~~~-~fX=O (43 (1.1) 
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The elasticity relationships are 

2Rh 
‘I’1 = 1 _ aa (EI + ae2) (QP), 

2Eh3 
GJ=- 3(1_G2) \XlfGx2) 

2Eh3 
(@), H= 3(lfa) lz 

The grain-disp~cement formulas are 

1 au 18A w .,I a u Bh’v 

E’=A3F+ABapv-rrl (4% W=Bag,r+~ar~ (1.5) 

1 a 
"l=-yf.z (aI3 (1.6) 

1 a 
T===nar B ap 1 -L”‘++-)-&~($$+g)+ 

1 

t 

1 au I a3 - --_ 
Rl 3 aa --v 

A3 a2 ) 
The notation from the monograph [l] is used here and it is considered that! a and p 

are dimensionless parameters of an orthogonal coordinate system referred to the lines 
of curvature of the shell middle surface. The symbol (ap) means that another equality 
can he obtained from the equality which it follows by replacing (a, 1, A, U, X) by 

(B, 2, B, v, Y) ,respectively. 
The complete membrane boundary value problem p] consisting of the integration 

of (l.l),(l 3),(1,5) in which N, = N, = 0 will be discussed with just the tangential 
boundary conditions taken into account and an additional requirement for tangential 
continuity. This latter means that the quantities IC, U, T,, S should be continuous on 
an interior line if it coincides with the line a = const, say. Let us note that because 
of solving the complete membrane problem not only the stress resultants, but also the 

displacements, are determined. Knowing these latter, the moments can be calculated 
by means of (1.6). (1.4). The state of stress which is comprised of stresses due to the 

stress resultants and moments and the edge effect stresses not taken into account here 
will be called fundamental. As clarified above, the properties of the fundamental state 
of stress are determined by the character of the complete membrane problem. 

The complete membrane problem turns out to be formulated incorrectly sometimes, 
i. e. there is no correspondence between the kind of equations and the character of the 
conditions which must be satisfied on the domain boundaries, Vfasov [3] constructed 

the example of such a problem. He showed that an increased stress and strain appeat 
in hinged shells of negative curvature for certain critical dimensions. At the same time, 
shells of nonnegative curvature behave in the customary manner under the same bound- 

ary conditions. This is associated with the fact that the complete membrane problem 
in the Vlasov’s example does not separate into two Dirichlerproblems. Such problems 
are correct for shells of positive curvature and incorrect for shells of negative curvature. 
The phenomena noted by Vlasov are in complete agreement with the results of inves- 

tigations by S. L. Sobolev, who examined the Dirichlet problem in a rectangle for the 
equations of string vibration [4] and showed that its solution is unstable relative to the 
rectangle dimensions. 

A case of opposite character can be mentioned, when shells of positive curvature 



906 E.H.Zveriaev 

have a considerably greater stress than shells of negative curvature. This is observed in 
cantilever shells, say. The complete membrane problem for such shells separates into 

two Cauchy problems (static and geometric) for equations of parabolic (for K = 0) and 
elliptic (for K > 0) types. Such problems are also called incorrect in mathematical 
physics and they are poorly investigated [5, 61. It is known (63 that their solutions are 
strongly unstable. The instability results in the fact that large reacive forces at the sup- 
ports are many times greater in the solution of the first static problem than in the prob- 

lem of the free edge The degree of such growth is determined by the kind of equation 
(the growth is according to a power law for a parabolic equation and an exponential law 
for an elliptic equation) and the magnitude of the domain in which the solution issought, 
i. e. the spacing between the clamped and free edges. Futhermore, a second geometric 

problem is solved. It is of the same type as the static problem. Therefore the displace- 
ments on the free edge will be many times greater than those which are “given” on the 
clamped edge. (The displacements corresponding to a particular solution of the geomet- 
ric equations (1.5) in which Q, a*, B are replaced by the stress resultants T,, T,, S by 
using the elasticity relationships (1.3) are considered given.) These particular solutions 
will be large because of the instability of the static problem. Eliminating these displa- 

cements by using the unstable solution of the geometric problem, we obtain some large 
displacements, corresponding to the twin growth of the solution described above, on the 

free edge. The bending strain components (1.6). moments (1.4) and stresses due to the 
moments can be calculated by means of these displacements. By using the formulas 

OT = VzT / h, oG = 3J2G / h2 

the following estimates can be obtained from (1.1) - (1.6) for the stresses o,r=O(h-ip-i) 

on the clamped edge ; LT~ = 0 (h-l), cc; = 0 (p-‘) .on the free edge. It is assumed here 

that unit shear stress resultants are given on the free edge and that p is some provisional 

measure of the growth of the integrals. These are certainly very rough estimates. How- 
ever, they show that the stresses due to the moments are independent of h. The situation 

changes when p-” becomes a sufficiently large number, i, e. the double growth of the 
solution is so large that the solution of the complete membrane problem incorrectly 

describes the stress-strain state of the shell. It is then necessary to go over to a compu- 

tation by means of bending theory. 
For a shell clamped at two edges the complete membrane problem is a problem of 

Dirichlet type (with two bouudary conditions at each point of the edge). It is correct 
in the sense mentioned above for shells of positive curvature and is formally incorrect 

for shells of negative curvature. Moreover, there is a basis to assume that this incorrect- 
ness is not essential in this case I_Zj. 

It will be shown below by computations that the highest stress originates in cantilev- 
ered shells of positive curvature and the lowest in shells of negative curvature. The cur- 
vature in clamped shells exerts no essential influence on the character of the state of 
stress. 

In confirmation of the reasoning expressed, the results of the computations are pre- 
sented for six specific examples of shells obtained by rotating the curves pictured in 
Fig. 1 around the 00, axis. The curves are taken so that their corresponding shells 
would have the identical altitude and the maximal and minimal radii of the parallels 

of the sphere and hy~boloid would be equal. The radius of the cylinder is selected 
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so that the error in solving the complete membrane problem would be not too large. 
For a cantilevered hyperboloid the error in the solution of the complete membrane prob- 
lem turned out to be negligible. But for a sphere the bending problem had to be solved. 

The error has been estimated as follows. As has been noted above, the moments can 
be found as a result of solving the membrane problem. We evaluate the stress resultants 

I’ 0 

\ 

c / 
7, 

Fig. 1 

N, and N,, which it had been impossible to find earlier 
from (1.1) because of their smallness, by using (1.2). Now 
substituting the known stress resultants i’V1, Nz into (1.1) 
and integrating, we find the corrections to the shear stress 
resuhants T,* , S *. We consider the greatest of the quan- 
tities T1* f T,, S* / S the error of the computation. 

The load has been selected as X = Y = 0, 2 = GOSZP 

in all the cases considered below for rigidly clamped shells, 
i, e. the solution corresponding to the first term of the Four- 

ier expansion of a load self-equilibrated along the parallels 
is considered. The loads not self-equilibrated along the para 

alIels are not considered here since this has been investigated 
in detail in n]. 

There is considered to be no surface loads in the examples 
devoted to the cantilevered shells, and the free edge is con- 
sidered loaded by the shear stress resultants T, = t @), S= 

s (b). Such a choice of load permits better examination of 

the stress singularities for shells of different curvatures. 

2. Let us study the stress-strain state of a cantilevered spherical shell. let its mid- 
dle surface be referred to the coordinates CC, b related to the geographic coordinates 

8, cp by the formulas CL = IntgV,B, p = rp. The coefficients of the first quadratic form 
of the surface are A = B = rch-kc in this coordinate system. 

The equality 5 = exp (cc + $3) establishes a one-to-one correspondence between the 
plane of the complex variable 5 and the sphere given in the tl, b coordinate system. 

Let us consider the contour 1 5 1 = pz subjected to the potential stress resultants t (p), 
s (b) and the contour I 5 1 = PI rigidly clamped (pl, p1 = const, pa > pi), i.e. let us 

consider a cantilever. 
it has been shown in [8] that the stress-strain state in a spherical shell is separated 

:nto three states: a membrane, a pure bending and a mixed state. 
Finding the first two states in the absence of a surface load reduces to constructing 

two analytic functions $( 5) and x (Q, in terms of which the desired stress resultants 
and moments are expressed directly as 

- T, + iS = rad-2$,, T, = -T,, Ni = Gi = H = 0 
- H f iGl = rzd-2X, G, = -G,, Ti = Ni = S = 0 

(i = i,2) 

In those cases when the variability of the mixed state of stress in one coordinate is 
considerably greater than in the other, it is more efficient to use the known solution of 
the simple edge effect instead of seeking the mixed state [l]. 

The displacements are computed in terms of the functions $ and x by means of the 
formulas [8] 
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Here and henceforth the superscripts (m), (b) denote that the quantities belong, respect- 

ively, to the membrane and purely bending states of stress. 
We shall seek the solution in the annulus P1 < I ?i 1 < pz by giving the desired func- 

tions +, x in the form of Laurent series. We write these series for 9, X and the displace- 

Substituting (2.1) and the known expressions for the edge effect quantities into the fol- 

lowing boundary conditions 
T, = t,, S - HI r = s, G, = ~~ - B-laH / 8fJ = 0 for 1 5 1 = pz 

u=~=~=y=O for1L[=pi 

we obtain expressions for the coefficients of the series of the desired quantities 

Here t,, sm are Fourier coefficients of the expansions of the function t (p), s (p). 

If p is sufficiently small, then the formulas will yield the same result as though the 
computation had been carried out for an unclamped shell, i. e. the greater the separa- 
tion between the shell edges, the less a membrane shell will it be. The law according 
to which the solution grows is exponential (it is a power law in a cylindrical shell). 

The membrane condition, or conversely, the pure bending condition can be obtained 
from (2.2) depending on the parameters therein. Let us just note that if p is sufficiently 

small, then the membrane condition (for whose derivation M,,, = 0) is necessary) agrees 



Influence of the sign of shell curvature on the character 
of the state of stress 

909 

with the condition obtained in fl] for a spherical shell with one edge which is free. This 
condition is sm + t, = 0 (2.3) 

Depending on the degree of violation of condition (2.3). the membrane state of stress 
will be spoiled. However, the practical value of this condition is very small since slight 

violation of condition (2.3) will cause large bending stresses because of the strong insta- 
bility in the solution. 

9. Let us conduct a detailed computation for shells of negative curvature in the 
example of a single-sheeted hyperboloid of revolution. Let us refer the middle surface 

of the hyperboloid to the parallels z = const and the meridians p = const. The follow- 
ing expressions hold in the z, j3 coordinate system for the coefficients of the first quad- 
ratic form A, B and the principal radii of curvature RI, Rs 

A = (i + r’2)‘ir, B = I, R, = - AS / /‘, R, r Ar 

where r = r (z) is the equation of the meridian and the prime denotes the derivative 

with respect to z. 

It is known that by using them, the membrane equations for shells of revolution of 
negative curvature outlined on second order surfaces are reduced to the form [3] 

a 
- 3 TI aa i ) + -& (WV) : - hr3 (X + r’Z) 

a ’ r 

-@ ( ) a 
XT1 +,,(arv) = - W/l Y - A z$J 

i 

where 
r = (azs + bz + c)“’ h = 4 (4ac - b2)-l cc = arc tg I1lzh (2az f 6)) 

Replacing the coordinates therein by means of E = a + /3, 11 = a - p and adding and 

subtracting these equations in pairs, we ontain a solution of D’Alembert type 

G TI + WS = - + ’ [W (A’ + r’2) + il’r4./1 (Y - .~!Z,J] dE, + fl (11) 
s 

5 TI - hr2S =r - +i [W(X + r’2) - hV.1 (Y - AZ,,)] dq + fL (4) 

Here fi, fs are arbitrary functions of integration to be determined from the boundary 

conditions. 
Let us turn first to seeking the state of stress of a cantilivered shell. The boundary 

conditions for such a construction are 

u=2)=w=y1=0 for z=z,; (3.1) 

T, = t, S = S, G, = N1 = 0 for z = z2 

The solutions of the equilibrium equations corresponding to conditions (3.1) are the 
following, in the absence of surface load : 

T\“” = ‘ldr-’ {A,r,-’ ]t (a2 - q) + t (5 - a._J] + r,-2h-l [S (a, - ‘1) - s (5 - a,~]] 

‘%“’ = ‘/,r-‘hel {A,-+, ]t (aa - q) - t (E - az)] + r,-%-1 [S (a, - 11) + s (g - .q)]} 

rz = r (z,), A, = A (z2) 



The equations for the displacements of the hyperboloid reduce to [3] 

(3.2) 

The solution of this system is written analogously to the solution for the stress resultants, 

and hence is not presented. 
Let us turn to a specific numerical example, and let us assume 

t = COSTS, s = sin2b for z = z2, P t (1 t- J2)‘* 

Then the desired stress resultants are 

T$“’ = A?-’ (Cisin2a - ~,cos2a) cos2p 

Strn) = r-’ (ClCOS2Ct + C,sin2a) sin2b 

(3.3) 

Ci = rz2 cos2-*, -k r,A,-1sin2a,, C, = rs2 sin2a, - r,A,-icos2a 2 

The graphs of these stress resultants are pictured in Fig. 2 by solid lines. 
The tangential conditions for the displacements are: u = v = 0 for z = ZL The solu- 

tions of (3.2) complying with them are representable as follows: 

i. i: 
2Ehu(“) = 7 sin 2r 

I \ 
(lL1 si.1 22 -hi. Cl5 27) dr r (3.4) 

1: 

cos 2r [ (lL1 cos 2a j- h:! sin 22) dl cos 2fi 

aa I 

2Eh~(‘~)= r sill 2r a (h 
[ 1 

2 sin 2r -/- hl cos 2~) dz + 
az 

il 

cos 2c( 
s 

(II:! cos 31 - hl sin 22) dr 
1 

sin 23 

=2 

h, = 12-20 + 424 (222 + 1)-‘]T(lm), h, = 2 (1 + o) (222 -t l)‘Q(m) 

u,@) = 2Avcm) + zr-I&“) - (1 - aAr)T(jn) (2&)-l 

$9 = A-'(D,cos2a f D, sin2a)cos28 

ucb) = r (Dl sin 2a -~- D, cos Za) sin 2fi 

,(b) = 2Av(b) + zr-~u(b) 

D1 = - vcm) (al) rlwl sin 2a, - Alucm) (al) cos 2a, 

D, = vcm) (al) r,-1cos2al - Alucm) (al) sin 2a, 

It is interesting to note that although the solution (3.3) for the hyperboliod is expres- 
sed in terms of trigonometric functions, it is not oscillatory. This is because a varies 
between - l/2 z and + ljzn when z varies between - 00 and 00, and therefore, the 
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solutions (3.3) in a hyperboloid of no matter what length can change sign no more than 
twice. This change of sign will hence occur more closely to the point z = 0 the greater 

the h, i.e. the greater the curvature 
of the “neck”. Membrane theory can 
here become inapplicable because of 
great variability in the state of stress. 

The computation of a hyperboloid 
clamped rigidly along two contours 
was carried out numerically for the 

following load : 

x = Y = 0, 2 = cos 2p 

The boundary conditions of rigid clamp- 
ing are written as 
u zz u = ZL’ zzz y1 zz 0 for ,7j = 

Fig. 2 
(3.5) 

219 2, = 22 

Expressions for the stress resultants (3.3) and displacements (3.4) were used in the cal- 
culations. The process of complying with the boundary conditions (3.5) is well known. 
The arbitrary constants C,, D, are determined from the first two boundary conditions 

(C, = D, = 0 follows from the symmetry of the structure), and are used to evaluate 
the stress resultants and the displacements. Graphs of the stress resultants for a hyperbo- 
loid clamped on two contours are pictured by dashed lines in Fig. 2. The error in the 
computation is estimated to be 

T,* / T, = 0 (10-4) 

4. The process of analyzing a cylindrical shell is not described here since it has 
been elucidated in detail in [l]. The stresses for all shells have been computed for 
11 = 0.01. 

The maximum stresses in cantilevered shells are: (a) in a cylindrical shell oT=200 
at the support, co = 50 at the free edge ; (b) in a spherical shell (it is assumed that 
t, = S2 = 1) crT = 19, oc: = 765 at the free edge (the stresses at the support are negh- 

gible); (c) in a hyperbolic shell sT == 210, 5 o = /to at the neck of the hyperboloid 

o(: = 6.6 at the free edge. 
The stresses in rigidly clamped shells are : (a) in a cylindrical shell oT = 70, 0~; = 

0. 85 at the middle of the shell ; (b) in a spherical shell uT = 150 at the equator, 

‘JG = 7.4 at the edge ; (c) in a hyperbolic shell oT = 110, qG = 27 at the neck. 
These numbers verify the general reasoning. As expected, the bending stresses turn 

out to be greatest in a spherical cantilever, and smallest in the hyperbolic. The stresses 
in rigidly clamped shells differ considerably less. 

Assurance of membrane behavior as a result of the clamping of one edge is success- 
fully achieved in a hyperboloid to a large extent, and in a cylinder to a lesser extent. 
Clamping plays a part for a spherical cantilever only in the case of a sufficiently nar- 
row spherical belt. This result is because the Cauchy’s problem for equations of elliptic 

type must be solved in the problem concerning the state of stress of a spherical canti- 
lever. The strong instability of such a solution indeed resulted in the appearance of 
large displacements at the free edge which caused large transverse stress resultants and 
moments. 
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6, let us analyze the statics of the problems considered in order to explain the phy- 
sical meaning of the appearance of bending stresses in shells. 

Let us cut a panel b E (-I& ‘fan), a E (cc,, az) (Fig. 3) from a circular cylindrical 
shell carrying the edge load 

t = t,eos2b, s = szsin213 (5.1) 

Reactive forces in the clamping and internal forces applied to the rectilinear edges of 

the pannel should equalize the edge load. The former should be [l] 

T, E T,,cos2b, G, = G,, cos 28, s = s,, sin 2b. N, = iv,, sin Zg 

and hence on the rectilinear edge 

(5.2) 

Ta=Gz=O (5.3) 

Under the action of the edge forces the panel tends to rotate counter-clockwise around 

the line UU, . The forces N, and the reaction R will hinder this. Let us assume that 

N, = 0. Then the behavior of the panel will not differ from the behavior of an analog- 
ous beam whose rectilinear edges experience displacements easily computed by strength 
of materials formulas, If the panel pictured in Fig. 3 tends to rotate counter-clockwise 

then its vicinity in the shell will tend to rotate clockwise. But there is no displacement 
w at the rectilinear edges in the shell during the deformation of the panel since w = 

~~~0s 2@. Therefore the forces Nz straighten the beam-panel in conformity with the 
requirements for their joint behavior in the shell. The reason why the forces iv, are 

large even in a short cantilever shell now becomes evident. The forces N, become the 

principal forces in a sufficiently long shell and the reaction R is secondary since the 
reaction R does not influence the deflection. And it is found that the edge effect in 

a long shell is equalized by forces A ‘* which should damp out in conformity whith the 

geometric scheme of shell behavior considered above, and to damp out more rapidly the 
thicker the shell. 

Fig. 3 Fig. 4 

let us cut a section p E (--‘ia fin, l/*z), 1 E 1 E (pl, &J out of a spherical shell loaded 
by edge forces (5.1) in the tangential plane. Two such sections, loaded differently by 

internal forces, are pictured in Fig. 4. For the sections cut out by the method mentioned 
(5.2), (5.3) are true and this is taken into account in loading the sides /& = - l/G, 
b, = ‘I$. Edge forces whose Fourier coefficients are t, = s2 = 1 in (5.1) are applied 
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to the section on the left in Fig. 4, while t, = - s2 = 1 for the right section of the 

shell. We take the direction of the force S, at the corners A, and A, in conformit+ 
with the rule of signs. Furthermore, the signs of the stress resultants do not change during 

motion from point A1 to B, and from A, to B, (this follows from the solution which 

is known). In the first case the moments of all the tangential ( internal and external) 
forces are added with the same sign, and in the second case with different signs. It is clear 

that the forces N, are perfectly necessary in the first case, and perhaps are not in the 
second. (The solution shows that N, = 0.) 

No part which cannot be equalized without taking account of the transverse forces 
and moments, cannot be found for a shell of negative curvature. Moreover, the moments 
due to the forces S, and S, acting on the part of the shell conveniently cut out as had 

been done above, are opposite in sign while they are identical in sign in shells of posi- 
tive curvature. Therefore, there is less foundation to expect bending stresses to appear 
in a shell of negative curvature than in a shell of positive curvature, which is in agree- 

ment with the results of computations. 
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